Modular RADAR: An Immune System Inspired Search and Response Strategy for Distributed Systems
نویسندگان
چکیده
The Natural Immune System (NIS) is a distributed system that solves challenging search and response problems while operating under constraints imposed by physical space and resource availability. Remarkably, NIS search and response times do not scale appreciably with the physical size of the animal in which its search is conducted. Many distributed systems are engineered to solve analogous problems, and the NIS demonstrates how such engineered systems can achieve desirable scalability. We hypothesize that the architecture of the NIS, composed of a hierarchical decentralized detection network of lymph nodes (LN) facilitates efficient search and response. A sub-modular architecture in which LN numbers and size both scale with organism size is shown to efficiently balance tradeoffs between local antigen detection and global antibody production, leading to nearly scale-invariant detection and response. We characterize the tradeoffs as balancing local and global communication and show that similar tradeoffs exist in distributed systems like LN inspired artificial immune system (AIS) applications and peer-to-peer (P2P) systems. Taking inspiration from the architecture of the NIS, we propose a modular RADAR (Robust Adaptive Decentralized search with Automated Response) strategy for distributed systems. We demonstrate how two existing distributed systems (a LN inspired multi-robot control application and a P2P system) can be improved by a modular RADAR strategy. Such a sub-modular architecture is shown to balance the tradeoffs between local communication (within artificial LNs and P2P clusters) and global communication (between artificial LNs and P2P clusters), leading to efficient search and response.
منابع مشابه
Immune System Inspired Strategies for Distributed Systems
Many components of the IS are constructed as modular units which do not need to communicate with each other such that the number of components increases but the size remains constant. However, a sub-modular IS architecture in which lymph node number and size both increase sublinearly with body size is shown to efficiently balance the requirements of communication and migration, consistent with ...
متن کاملSemantic Preserving Data Reduction using Artificial Immune Systems
Artificial Immune Systems (AIS) can be defined as soft computing systems inspired by immune system of vertebrates. Immune system is an adaptive pattern recognition system. AIS have been used in pattern recognition, machine learning, optimization and clustering. Feature reduction refers to the problem of selecting those input features that are most predictive of a given outcome; a problem encoun...
متن کاملLoad Model Effect Assessment on Optimal Distributed Generation Sizing and Allocation Using Improved Harmony Search Algorithm
The operation of a distribution system in the presence of distributed generation systems has someadvantages and challenges. Optimal sizing and siting of DG systems has economic, technical, andenvironmental benefits in distribution systems. Improper selection of DG systems can reduce theseadvantages or even result in deterioration in the normal operation of the distribution system. DGallocation ...
متن کاملPower Allocation Strategies for MIMO Radar Waveform Design
The role of waveform design is central to effective radar resource management for state-of-the art radar systems. The waveform shape employed by any radar system has always been a key factor in determining the performance and application. The design of radar waveform to minimize mean square error (MSE) in estimating the target impulse response is based on power allocation using waterfilling. ...
متن کاملIIR System Identification Using Improved Harmony Search Algorithm with Chaos
Due to the fact that the error surface of adaptive infinite impulse response (IIR) systems is generally nonlinear and multimodal, the conventional derivative based techniques fail when used in adaptive identification of such systems. In this case, global optimization techniques are required in order to avoid the local minima. Harmony search (HS), a musical inspired metaheuristic, is a recently ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010